
Drift–diffusion kinetics of a confined colloid

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys.: Condens. Matter 22 195104

(http://iopscience.iop.org/0953-8984/22/19/195104)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 08:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/22/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 195104 (7pp) doi:10.1088/0953-8984/22/19/195104

Drift–diffusion kinetics of a confined
colloid
Yves Leroyer and Alois Würger
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Abstract
The drift–diffusion equation on a finite interval with reflecting boundary conditions is solved by
Laplace transformation. The Green function is obtained as a series in powers of e−hu/D , where
u is the drift velocity, D the diffusion coefficient and h the width of the interval. In the
drift-dominated regime hu/D � 1, the first terms provide an exact solution in the limit of short
and long times, and a good approximation in the intermediate regime. As a possible application,
we discuss confined colloidal suspensions subjected to an external field.

1. Introduction

Drift–diffusion models describe stochastic processes with
accumulation and noise terms [1]. The simplest case
corresponds to a Fokker–Planck equation with constant drift
velocity and diffusion coefficient [2], with applications ranging
from decision tasks in cognitive science [3] to the evolution
of droplet size distributions in turbulent clouds [4]. More
complex variants deal with the effects of confinement on
Brownian motion with a spatially varying mobility, or study
how a discontinuous diffusion coefficient or drift velocity
affect the mean first-passage time [5–7].

In colloid science, the interplay of drift and diffusion
determines both the transient and stationary states of a
suspension confined in a thin film or in a microchannel subject
to an external field. Colloidal transport is of great interest for
microfluidic devices and their applications [8, 9]. Fractionation
or active mixing in complex fluids require external forces
acting on the suspended particles or macromolecules. Body
forces such as gravity and optical tweezers vary with
the volume and thus are less efficient for small solutes,
whereas the transport velocity due to interfacial forces is
independent of the particle size. If electric fields are
widely used in applications [10–13], in recent years thermal
and chemical gradients have been shown to provide an
alternative tool for manipulating colloidal suspensions on the
microscale.

The kinetics of separation and mixing arise from the
competition of Brownian motion and the forces acting
on the suspended particles or macromolecules. With the
Einstein coefficient D ∼ μm2 s−1, one finds that diffusive
transport on the length scale of a microchamber is much
slower than 1 μm s−1. Thermal and chemical gradients

may result in velocities of several μm s−1 and thus provide
an efficient means for moving particles. For comparison,
the electrophoretic velocity may attain millimeters per
second [14].

A chemical gradient has been used for focusing or
dispersing a colloidal suspension in a �-shaped microfluidic
device [15]. The lateral diffusion of the mobile ions
gives rise to a non-uniform salinity n0, which in turn
drives the silica beads towards regions of higher electrolyte
strength. With an appropriate choice for the electrolyte
solution, this diffusiophoretic effect permits us to rapidly
spread the suspension over the whole channel or, in contrast,
to concentrate the colloidal particles in the center [15].
Thermally driven sedimentation of charged latex beads in a
microchamber was shown to confine the colloid within a layer
of a few microns at the lower boundary [16, 17], similar
to electrophoretic deposition [18]. Colloidal particles, ionic
micelles, proteins and DNA are equally sensitive to thermal
forces [19]. A radial temperature gradient in a thin film has
been used for enhancing the concentration of charged particles
in a colloid–polymer mixture by more than two orders of
magnitude [20].

In most of these situations, the steady-state probability
distribution is readily obtained; yet the time evolution of a
given initial state and its kinetics towards the stationary density
are less obvious. In the present paper we study the kinetics
of the probability distribution n(x, t) for constant D and u.
In section 2 we present the model and relevant experimental
situations. In sections 3 and 4 we give the Green function in
terms of an infinite series and deal with the special case of a
constant initial density. Section 5 discusses particular aspects
in view of applications to colloidal systems and compares our
result with previous theoretical work.
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Figure 1. Schematic view of the constant density n = n0 for zero
field at t = 0, and of the stationary state n = neq after relaxation in
an applied field.

2. Diffusion with drift in one dimension

The state of a colloidal suspension at time t is described by the
density n(x, t) where the coordinate is restricted to the interval
0 � x � h. The particle current consists of two contributions:

J = un − D
dn

dx
, (1)

where the first one describes the drift at speed u due to an
external field and the second one accounts for diffusion with
the Einstein coefficient D.

The steady-state distribution is obtained by solving
J (x) = 0. Assuming D and u to be constant one finds the
stationary particle density

neq(x) = n0
h

�

e−x/�

1 − e−h/�
(2)

where the total number of particles is conserved. We have
defined the average concentration

n0 = 1

h

∫ h

0
n(x, t) dx,

and introduced the length scale

� = D

|u|
that gives the width of the steady-state distribution.

For micron-sized particles one has D ∼ μm2 s−1. Typical
transport velocities are of the order of u ∼ μm s−1; such a
value is attained, for example, for thermophoresis driven by a
temperature difference of 20 K across a 100 μm wide channel.
Thus one finds that the colloid will eventually concentrate in
a layer of a few microns. Formally equation (2) is similar to
sedimentation where the excess mass m of a particle gives rise
to the buoyancy force mg.

The density and current satisfy the conservation equation

∂ J

∂x
+ ∂n

∂ t
= 0, (3)

and the condition of zero current at the boundaries

J (0) = 0 = J (h). (4)

Figure 2. Schematic view of a microchannel of width h with
ambient flow velocity v0. In the gray zone an applied field
perpendicular to the channel axis acts on the colloidal particles and
thus enhances the concentration at the lower boundary. In the
stationary state the colloidal distribution is characterized by a
confinement length �. (a) The initial density is uniform. (b) Same as
(a) but with a localized beam of injected particles at x = x1.

With the above definition of the current, one obtains the
diffusion equation for the number density

∂n

∂ t
= D

∂2n

∂x2
− u

∂n

∂x
, (5)

and corresponding boundary conditions from (4).
Previous work on this drift–diffusion model has concen-

trated on the effective diffusion coefficient [2]. Here we
consider the transport kinetics, that is, the time evolution of
the number density n of colloidal particles and its relaxation
towards the equilibrium distribution.

Before starting evaluation of the solution of (5), we discuss
relevant experimental situations. The simplest one is shown
in figure 1, a colloidal suspension in a thin film subject to a
perpendicular field along the x axis. If the field is constant
and if the initial distribution n(x, t = 0) does not depend
on the in-plane coordinates y and z, the one-dimensional
equation (5) constitutes a complete description of the problem.
Indeed, diffusion in the y–z plane does not affect the density
distribution n(x, t). The situation of figure 1 corresponds to
the set-up of [16], where a temperature gradient is applied to
a microchamber of 20 μm; in the steady state the suspended
latex beads are confined to a layer of thickness � ∼ μm.

In figures 2 we show a microchannel with ambient flow
velocity; a transverse field along the x axis is applied in the
gray region. These situations are approximately described by
the 1D model, if one replaces the parabolic velocity profile
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across the channel by a constant value v0 and if the latter is
significantly larger than the lateral drift velocity, u � v0.
With these assumptions, diffusion along the channel in the z
direction is negligible; the y axis is of no relevance, and the
transverse kinetics reduces to a one-dimensional problem. In
the experiment of [15], the ratio u/v0 is of the order of 10−3;
neglecting the lateral velocity profile is expected to affect only
the details close to the lower boundary. The upstream colloidal
density defines the initial distribution n(x, 0): figure 2(a)
corresponds to an initial constant density; this case is treated
in section 4. The situation described in figure 2(b) corresponds
to the Green function of the problem, which we derive in
section 3.

3. The Green function

For the sake of notational convenience we introduce the
dimensionless variables

τ = t
|u|
�

, ξ = x

�
, ξ0 = h

�
. (6)

In term of these variables equation (5) becomes

∂n

∂τ
= ∂2n

∂ξ 2
+ ∂n

∂ξ
; (7)

where we suppose u < 0, i.e. the applied field drives the solute
in the negative x direction towards the boundary at x = 0; the
opposite case u > 0 is accounted for by defining ξ = ξ0 − x/�.

The parameter ξ0 can be expressed as

ξ0 = h

�
= |u|

D/h

which is the ratio of the advection velocity u to that of diffusion
over the channel width D/h, and is known as the Péclet
number for particle diffusion [21]. This point will be discussed
in section 5.1.

In experiments the initial distribution of the colloidal
particles may be homogeneous through the whole channel as in
figure 2(a) or be finite in one part as realized in the experiment
of [15]. In order to deal with the general case, we define
the Green function of the process, g(ξ, ξ1; τ ), which is the
probability for a particle located at position ξ1 at time τ = 0 to
be at position ξ at time τ . This function allows us to describe
the time evolution of the initial distribution n(ξ, 0):

n(ξ, τ ) =
∫ ξ0

0
g(ξ, ξ1; τ )n(ξ1, 0) dξ1. (8)

Inserting (8) in the diffusion equation (7) one finds that the
Green function satisfies the diffusion equation

∂g

∂τ
= ∂2g

∂ξ 2
+ ∂g

∂ξ
; (9)

with the initial condition

g(ξ, ξ1; τ = 0) = δ(ξ − ξ1). (10)

The zero current condition (4) results in
[

g + ∂g

∂ξ

]
ξ=0

= 0 =
[

g + ∂g

∂ξ

]
ξ=ξ0

. (11)

This boundary condition problem is solved after Laplace
transformation. The detailed calculation is given in the
appendix; here we quote the result:

g(ξ, ξ1, τ ) = e−ξ

1 − e−ξ0

+ e−ξ
∞∑

k=−∞
e−kξ0 E(2kξ0 + ξ1 + ξ, τ )

+ e−(ξ−ξ1)/2
∞∑

k=−∞

∑
±

w(2kξ0 + ξ + ξ1, τ ), (12)

where we have defined the functions

w(ξ, τ ) = 1

2
√

πτ
e− τ2+ξ2

4τ ,

E(ξ, τ ) = 1

2
erf

(
τ − ξ

2
√

τ

)
− 1

2
.

(13)

The Error function defined by erf(z) = 2√
π

∫ z
0 exp(−y2) dy is

an odd function of z : erf(z) = −erf(−z).
We briefly discuss the behavior at short and long times.

For τ � 1 the functions E are equal to −1 for k � 0 and
zero for negative k; with

∑∞
k=0 e−kξ0 = 1/(1 − e−ξ0) one finds

that the corresponding series cancels the first term on the right-
hand side of (12). The functions w in the remaining series are
exponentially small, except for the second term at k = 0, that
is e−(ξ−ξ1)/2w(ξ − ξ1, τ ). As a consequence, at short times the
Green function is given by

g (ξ, ξ1, τ ) = 1

2
√

πτ
e− (ξ−ξ1+τ )2

4τ (τ � 1). (14)

This form ceases to be valid as soon as its values at the
boundaries ξ = 0 and ξ0 become significant. Not surprisingly,
in physical coordinates x and t we recover the free diffusion
propagator, that is, a Gaussian of width

√
Dt and a maximum

position x1 + ut which moves at a constant drift velocity u.
Furthermore we can check that the initial condition is satisfied:
the limit limτ→0 g(ξ, ξ1, τ ) = δ(ξ − ξ1) implies that the
probability density at τ = 0 is concentrated at ξ1.

Now we turn to the long-time limit τ � ξ0. From the
functions w and E it is clear that both series in (12) vanish;
thus g tends towards the stationary probability distribution

geq(ξ) = e−ξ

1 − e−ξ0
(15)

and becomes independent of ξ1 and τ . The first term on
the right-hand side accounts for the stationary distribution,
whereas the series describe the transient from the initial state.

Most experimental situations realize the case of strong
confinement, where the sedimentation length � is significantly
smaller than the width h, that is, ξ0 � 1. Because of the
exponential decay of the functions E and w, then the series
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Figure 3. Variation of the reduced Green function g(ξ, ξ1, τ ) with
the variable ξ at different times τ .

in equation (12) can be truncated by discarding the terms for
which the absolute value of the spatial argument of E and w is
larger than ξ0, resulting in

g(ξ, ξ1, τ ) = e−(ξ−ξ1)/2{w(ξ1 + ξ, τ )

+ w(ξ − ξ1, τ ) + w(2ξ0 − ξ1 − ξ, τ )}
+ e−ξ {1 + E(ξ + ξ1, τ ) + eξ0 E(ξ + ξ1 − 2ξ0, τ )}. (16)

This expression provides a very good approximation for ξ0 �
5. It is plotted in figure 3 as a function of ξ for the width
ξ0 = 5 and initial position ξ1 = 3 at the reduced times
τ = 0.1; 0.4; 1; 5.

At the shortest times the curves can hardly be
distinguished from a Gaussian of width

√
τ and mean position

ξ1 − τ (see equation (14)). A more complex behavior occurs at
τ ∼ 1: besides the maximum of the shifted initial distribution,
the steady current towards the left gives rise to a second
maximum at the lower boundary. At long times τ � ξ0 the
probability distribution relaxes towards the steady state geq.

4. Constant initial distribution

The time-dependent probability distribution for an arbitrary
initial condition is given by equation (8). Here we consider in
more detail the particular case of a flat initial density n(ξ1, 0) =
n0, where

n(ξ, τ ) = n0

∫ ξ0

0
g(ξ, ξ1; τ ) dξ1.

The integration of the series of the Green function can easily
be performed term by term. Starting from the expression of
equation (12) we find after some algebra

n(ξ, τ ) = neq(ξ) + n0

∞∑
k=−∞

{e−ξ/2W (2kξ0 + ξ, τ )

− e(ξ0−ξ)/2W [(2k + 1)ξ0 + ξ, τ ]}

Figure 4. Time evolution of an initial flat density n(ξ, 0) = n0. The
curves show the density distribution at τ = 0.05, 0.5, 2, 5.

where we have defined the functions

W (ξ, τ ) = 2τw(ξ, τ )+e−ξ/2(τ−ξ+1)E(ξ, τ )+eξ/2 E(−ξ, τ )

and the equilibrium value

neq(ξ) = n0ξ0
e−ξ

1 − e−ξ0
. (17)

For ξ0 � 1 the density can be approximated to a good
degree of accuracy by discarding in the sum the terms for
which the absolute value of the spatial argument of W exceeds
ξ0:

n(ξ, τ ) = neq + n0e−ξ/2{W (ξ, τ ) − eξ0/2W (ξ − ξ0, τ )

− eξ0/2W (ξ + ξ0, τ )}.
The last term contributes significantly only for large times.
In figure 4 we plot n(ξ, τ ) as a function of ξ for ξ0 = 5
and the reduced times τ = 0.05, 0.5, 2, 5. At short times
τ � 1 the external field carries the suspended particles at
constant velocity u towards the left; the depression arising at
the right appears as an excess density at the left boundary,
whereas the inner part of the channel shows a plateau. As
the reduced time τ becomes comparable to ξ0, the depression
and the bump extend through the channel; at longer times,
they evolve towards the exponential distribution of the steady
state (17). The latter is reached when the reduced time is of the
order of the channel width, τ ∼ ξ0.

5. Discussion

5.1. The Péclet number ξ0

We have seen in section 3 that the parameter ξ0

ξ0 = h

�
= |u|

D/h

4
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is the Péclet number of the flow, defined as the ratio of the
advection velocity u to that of diffusion over the channel
width D/h. According to (2), efficient confinement requires
a sedimentation length significantly smaller than the channel
width, that is, a Péclet number much larger than unity, ξ0 � 1.

We briefly discuss this condition in view of different
driving mechanisms. For an aqueous suspension of micron-
sized particles in a 100 μm wide channel, the diffusive velocity
D/h is smaller than 10 nm s−1. The drift velocity due to
an applied electric field may attain millimeters per second,
resulting in a very large Péclet number. A temperature
gradient induces a thermo-osmotic flow along the particle
surface; with ∇T ∼ 0.1 K μm−1 and the coefficient
DT ∼ 10 μm2 K s−1 [22, 23], the resulting transport velocity
u = −DT∇T may attain several microns per second. The
sedimentation length of micron-sized particles has been shown
to be comparable to their diameter [16]. A non-uniform
electrolyte gives rise to a drift velocity u = DDP∇n0 of
several microns per second; in the experiment of [15] the
salinity gradient ∇n0 is not constant, thus giving rise to a more
complex flow pattern than that studied in the present work.
These estimates show that chemical and thermal gradients may
be used for strong confinement with Péclet numbers of the
order of 100.

5.2. Relevant timescales

Both the stationary state and the transient kinetics are
determined by the competition between drift at velocity u and
diffusion with the Einstein coefficient D. The corresponding
timescales are given by the duration of driven transport across
the channel width h:

tT = h

|u| , (18)

and by the diffusion time of a Brownian particle over a length
h:

tD = h2

D
. (19)

These times are related by the coupling parameter ξ0 according
to tD = ξ0tT. For a weak external field (ξ0 < 1) diffusion is
faster and the probability distribution relaxes on a timescale tD.

Here we are interested in the opposite case ξ0 > 1. Then
drift prevails and the stationary state is reached after a time tT.
We discuss the transient state in terms of the probability for
a particle that started at t = 0 at the upper boundary x = h
to arrive at the lower boundary x = 0 after a time t ; this
probability is given by the Green function g. For large Péclet
number, say ξ0 > 5, it is sufficient to retain linear corrections in
the small parameter e−ξ0 in the expression of g, equation (12),
and the Green function is

g(0, ξ0, τ ) = 1 + 4eξ0/2w(ξ0, τ ) + E(ξ0, τ ) + eξ0 E(−ξ0, τ ).

(20)
It turns out to be convenient to write the variable τ in

the form τ = ξ0t/tT. In figure 5 we plot g(0, ξ0, ξ0t/tT) as
a function of the reduced time t/tT for different values of the
parameter ξ0. Its time dependence at a given value for ξ0 is best
understood by a glance at figure 5. At short times t � tT the

Figure 5. The Green function g(0, ξ0, ξ0t/tT) which gives the
probability for a particle starting at time t = 0 from the upper side of
the channel (ξ1 = ξ0) to arrive at the opposite side (ξ = 0) at time t .
This probability density is plotted as a function of time in units of tT

for different values of ξ0 = 10 (dashed), 30 (dotted), 100
(dashed–dotted) and 300 (solid).

probability density is concentrated at x = h or ξ = ξ0, and it is
very unlikely to find a particle at x = 0. In the long-time limit
t � tT one reaches the asymptotic value geq = 1/(1 − e−ξ0)

which is very close to unity. Figure 5 shows that in the reduced
variable t/tT the intermediate range becomes narrower with
increasing ξ0. The width of the cross-over region is readily
obtained from equation (20): for large values of ξ0 this function
simplifies to 1 + E(ξ0, τ ), or

g

(
0, ξ0, ξ0

t

tT

)
= 1

2
+ 1

2
erf

(
t − tT
2
√

t tT

√
ξ0

)
(ξ0 � 1).

(21)
Thus the width of the cross-over region of figure 5 between
the short-time and the long-time regimes, decreases with the
inverse square root of the Péclet number:

	t ∼ tT√
ξ0

. (22)

In the limit ξ0 → ∞, the error function is given by the
sign of its argument and the propagator tends towards a step
function g(0, ξ0, ξ0t/tT) → 
(t − tT). In this limit diffusion
is completely overwhelmed by the drift process; Brownian
motion is irrelevant on the timescale tT, which is the duration
of particle transport across the channel.

5.3. Hydrodynamic interactions

The present work relies on a single-particle picture which
is valid at sufficiently low concentrations. Collective
effects on transport coefficients comprise ‘thermodynamic’ and
hydrodynamic contributions [24]. Thus collective diffusion
in a semidilute colloidal suspension enhances the Einstein
coefficient according to

D = D0(1 + 2Bφ + 6.55φ),

5
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where φ is the volume fraction. The virial coefficient B is due
to two-particle interactions; it is negative for attractive forces,
whereas steric interactions and the corresponding excluded
volume lead to a positive value of B . The second term with
the numerical coefficient 6.55 describes the hydrodynamic
drag exerted by a moving bead on the surrounding fluid [25].
Similar corrections of opposite sign occur for the gravity-
driven sedimentation velocity. In contrast, motion driven by
surface forces, such as electro-osmosis or thermo-osmosis in
the particle’s electric double layer, are hardly affected by
hydrodynamic interactions. In a bulk colloid, the drift velocity
u is independent of the volume fraction.

Additional effects occur close to the solid boundaries.
The diffusion coefficient D shows a reduction linear in the
inverse distance from the confining wall [21, 26]. The drift
velocity u is reduced by a term that varies with the cube of
the inverse distance from the wall [27]; thus boundary effects
are significantly weaker than for the diffusion coefficient. In
general, boundary effects are negligible as long as the film
thickness is much larger than the bead size.

5.4. Comparison with an approach based on Fourier series

In a very recent paper, Zhang et al solved the drift–diffusion
equation (9) by expanding the initial state in a Fourier series
and separating the variables x and t [3]. Rewriting their
equations (A4)–(A16) in our notation, we obtain the Green
function in the form

g(ξ, ξ1, τ ) = geq(ξ) + e−ξ/2
∞∑

n=1

gn(ξ1)e−λnτ

×
[

cos(qnξ) − sin(qnξ)

2qn

]
, (23)

with the wavevector and the relaxation rate

qn = n
π

ξ0
, λn = q2

n + 1

4
. (24)

For the initial condition g(ξ, ξ1, 0) = δ(ξ −ξ1) the coefficients
gn(ξ1) become

gn(ξ1) = 2eξ1/2

ξ0
(
1 + 1

4 q−2
n

)
[

cos(qnξ1) − sin(qnξ1)

2qn

]
. (25)

We briefly discuss the convergence of this series expansion.
For large n the sine functions vanish in both (23) and (25).

Thus the spatial part of each term is, up to a numerical
prefactor, e−(ξ−ξ1)/2 cos(qnξ) cos(qnξ1). At τ = 0 the series
does not converge smoothly, as is well known for the Fourier
representation of a delta peak δ(ξ − ξ1). At finite times the
exponential factor e−λnτ vanishes for large enough n; in order
to obtain a good representation for g(ξ, ξ1, τ ), the sum over n
has to be pushed well beyond n∗ = τ− 1

2 ξ0/π . Thus the Fourier
series converges rapidly at long times and for small values of
ξ0; in the short-time limit, more and more terms have to be
retained as τ decreases.

Our equation (12) gives the Green function as a series in
powers of e−ξ0 which converges smoothly for any τ and ξ .
For short times τ � 1 one recovers the exact expression (14);

in the opposite limit τ � ξ0 the series disappears and leaves
the steady-state distribution geq. For a sufficiently strong drift
term, say ξ0 > 5, the few terms given in (16) provide a very
good approximation in the intermediate range.

6. Summary

For the drift–diffusion model in a finite interval with constant
coefficients, we have obtained an exact solution in terms of a
series in powers of e−ξ0 where ξ0 is the Péclet number. In drift-
dominated applications (ξ0 � 1), such as colloidal transport
in confined geometries, the Green function of the diffusion
equation is very well approximated by (16) in terms of a few
elementary functions.

The characteristic time for transport at velocity u over the
length h is, not surprisingly, given by tT in (18). In the vicinity
of t ∼ tT the Green function g(0, ξ0, τ ) increases from 0 to
the steady-state value 1/(1 − e−ξ0 ), as illustrated in figure 5.
The duration 	t of this cross-over decreases with the Péclet
number according to (22).

The drift–diffusion kinetics shown in figure 3, and in
particular the two-peak structure at intermediate times, should
be visible for confined colloidal suspensions subject to an
external field.

Appendix

We solve the boundary value problem equations (9), (10)
and (11) by Laplace transformation. Let G(ξ, ξ1, p) = Lτ {g}
be the Laplace transform of g(ξ, ξ1, τ ); equations (9) and (10)
lead to

pG − ∂2
ξ G − ∂ξ G = δ(ξ − ξ1).

The general solution of this equation is

G(ξ, ξ1, p) = A(p)e− δ+1
2 ξ + B(p)e

δ−1
2 ξ + 1

δ
e−(ξ−ξ1)/2 e− δ

2 |ξ−ξ1|

(26)
where

δ = √
1 + 4p.

The boundary conditions (equation (11)) remain unchanged:

G + ∂G

∂ξ

∣∣∣∣
ξ=0

= 0 = G + ∂G

∂ξ

∣∣∣∣
ξ=ξ0

.

From these equations we get for the functions A(p) and B(p):

A (p) = 1

δ

eξ1/2

1 − e−δξ0

[
e− δ

2 (2ξ0−ξ1) + δ + 1

δ − 1
e− δ

2 ξ1

]
,

B (p) = 1

δ

eξ1/2e−δξ0

1 − e−δξ0

[
e− δ

2 ξ1 + δ − 1

δ + 1
e

δ
2 ξ1

]
.

Replacing in these expressions 1
1−e−δξ0

by
∑∞

k=0 e−kδξ0 we can
express the solution G(ξ, ξ1, p) (equation (26)) as follows:

e(ξ−ξ1)/2G(ξ, ξ1, p) = v(|ξ − ξ1|)
+

∞∑
k=0

v[(2k + 2)ξ0 − ξ1 + ξ ] + v(2kξ0 + ξ1 + ξ)

+ v[(2k + 2)ξ0 − ξ1 − ξ ] + v[(2k + 2)ξ0 + ξ1 − ξ ]
+ v+(2kξ0 + ξ1 + ξ) + v−[(2k + 2)ξ0 − ξ1 − ξ ]

6
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where

v(ξ, p) = e−δξ/2

δ
, v±(ξ, p) = e−δξ/2

2p

(
1

δ
± 1

)
.

The inverse Laplace transform is expressed in terms of

w(ξ, τ ) = L−1{v(ξ, p)}, w±(ξ, τ ) = L−1 {v±(ξ, p)}

where

w(ξ, τ ) = 1

2
√

πτ
e− τ2+ξ2

4τ

has already been defined in (13) and

w±(ξ, τ ) = 1

2
e∓ξ/2

[
erf

(
τ ∓ ξ

2
√

τ

)
± 1

]

we get

g(ξ, ξ1, τ ) = e−(ξ−ξ1)/2
∞∑

k=0

{w(2kξ0 − ξ1 + ξ)

+ w(2kξ0 + ξ1 + ξ)

+ w[(2k + 2)ξ0 − ξ1 − ξ ] + w[(2k + 2)ξ0 + ξ1 − ξ ]
+ w+(2kξ0 + ξ1 + ξ) + w−[(2k + 2)ξ0 − ξ1 − ξ ]}.
It is easy to show that each term of order k in the series

is bounded by e−kξ0 , thus ensuring a quick convergence for
ξ0 � 1.

This expression can be simplified by expressing w± by

E(ξ, τ ) = 1

2
erf

(
τ − ξ

2
√

τ

)
− 1

2

and by noticing that w is an even function of ξ :

g(ξ, ξ1, τ ) = e−ξ

1 − e−ξ0
+ e−(ξ−ξ1)/2

×
∞∑

k=−∞
{w(2kξ0 + ξ1 + ξ) + w[2kξ0 + ξ − ξ1]}

+ e−ξ
∞∑

k=−∞
e−kξ0 E(2kξ0 + ξ1 + ξ, τ ). (27)

Since the functions w and E vanish at long times, the
Green function tends towards the stationary state:

lim
τ→∞ g(ξ, ξ1, τ ) = geq(ξ) = e−ξ

1 − e−ξ0
.

In the short-time limit we recover the initial condition for
g. Noting that E tends towards a step function, E(ξ, τ ) →
−
(ξ) as τ → 0, and that limτ→0 w(ξ, τ ) vanishes for ξ �= 0
and diverges at ξ = 0, one readily finds

lim
τ→0

g(ξ, ξ1, τ ) = δ(ξ − ξ1).
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